
1. INTRODUCTION

Survival analyses examine the rate at which morbid or lethal events occur in a population, and
the relation of those rates to covariates. The goal is generally to predict future survival under
specific covariate conditions. An alternative problem—to evaluate past covariate values given
information about current morbid or lethal events—is less commonly done. Such analyses are
important when events do not occur at the expected rate. In those circumstances one might wish
retrospectively to evaluate unobserved covariate trajectories to determine if they operated to
prevent, or stimulate, the occurrence of events. Such evaluations can be done if the form of the
hazard function, its parameter values, and probabilistic properties of the covariates are known
from theoretical, or other empirical, bases.

For example, the level of asbestos exposure, and the risk of mesothelioma, has been estimated
in a number of studies of selected occupationally exposed populations with generally very high
exposure levels (e.g. shipyard workers, heating and insulation workers1). Such estimates can be
used, with appropriate models, to evaluate past exposure to asbestos among workers in other
industries where the fact of asbestos exposure is known, but not the quantitative level of
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exposure (e.g. construction workers). This is of practical, as well as scientific, consequence
since such estimates may determine compensation for asbestos-exposed workers in occupations
not intensively studied.2,3

Similar problems arise for other chemical, medication or pesticide exposures where
significant adverse physiological or environmental effects can become evident long after their
use. If the influence of exposure on survival is established in studies of select populations with
measured exposure levels, those studies can be used to estimate exposure levels for persons
whose exposure was not directly measured using parametrized hazard models where the
functional dependency of the hazard on covariates is known—or can be rationalized by
theoretical arguments (e.g. the Weibull hazard model for the multi-hit/stage model of
carcinogenesis4).

A model appropriate for retrospective analyses of unobserved randomly changing covariates
must both be able to probabilistically describe the processes of covariate change as well as be
able to describe how covariates influence survival (i.e. times to failure). Proportional hazard or
logistic regression models (which are often used to estimate regression parameters when
covariates are measured at fixed times) do not contain the necessary structure and parameters to
conduct retrospective analyses of unobserved stochastically evolving covariates. We present a
model, comprising both a quadratic hazard function and a Gaussian–Markov process describing
covariate evolution over time, which can be used to derive the necessary equations to analyse
retrospectively the effects of latent covariate trajectories on mortality (or other discrete health
changes). This model was initially suggested for use in biological applications by Woodbury and
Manton,5 and examined by Yashin6 for analysis of longitudinal studies (e.g. the Framingham
Heart Study.7,8

Below, we show how this two-component model can be used in retrospective covariate
analyses by deriving the corresponding ‘smoothing’ (conditional expectations for different
order moments) equations. Smoothing equations for diffusion type stochastic processes have
been discussed by Lipster and Shiryayev.9 They did not, however, describe stochastic processes
with jump components (i.e. discrete changes—such as mortality) which are needed to analyse
survival. Khametov and Yashin10 derived smoothing equations for multivariate point processes
with observed trajectories. Smoothing estimates have also been used to analyse observed
diffusion processes.11,12 Yashin and Manton13 proved that smoothing estimates of covariate
trajectories were needed to extend the EM-algorithm for survival problems with unobserved (or
partially observed) randomly changing covariates. Below, two types of smoothing equations
will be presented. One type, the backward smoothing equations, are appropriate for estimating
the past values of covariates whose evolution is described by a certain general class of
stochastic process. A second type, the forward smoothing equations, are a computationally
efficient way of updating model parameter estimates when new survival information becomes
available.

2. SURVIVAL AND THE INFLUENCE OF UNOBSERVED COVARIATES; GENERAL
PROPERTIES

The survival of members of a cohort may be influenced by an unobserved stochastic process.
Assume this process operates independently for each individual. Denote the value of an
unobserved time varying factor, possibly affecting survival at t, as Yt. Assume also that the
individual’s hazard rate is influenced by a Yt whose change is described by a stochastic process
with initial condition Y0, time dependence a0(t), state dependence a(t)Yt and diffusion
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generated by a Wiener process with a time dependent scale parameter b(t), i.e.

Y�t = Y�0 +
0c
��t
 (a�0(u) + a(u)Y�u) du +

0c
��t
 b(u) dW�u (1)

Y0 is assumed normally distributed with initial mean m0, and variance Γ0. There is no explicit
formulation of a stochastic risk factor process like (1) in standard survival models, e.g. Cox
regression.18 Consequently, those models implicitly assume that unobserved stochastically
evolving factors with systematic drift (i.e. state dependence) do not influence survival so that
the coefficient estimates can be assumed to be unbiased.

When we have multiple longitudinal studies with statistically significant, but discordant, results,
the differences could be due to the influence of unobserved stochastic risk factor processes. To assess
this, more general types of hazard model containing a covariate process like (1) must be used.

To produce unbiased estimates of stochastic risk factor process parameters for survivors to a
given time, equation (1) must also be adjusted for systematic mortality selection. This requires
(1) to be simultaneously estimated with the hazard function parameters. Consequently, the
hazard function selected must be mathematically consistent with the form of the process as
described by equation (1). If the time to death for individuals is indicated by random variable T ,
the survival function for an individual, conditional on the trajectory of Yu over the interval
[0, t ], can be written as a quadratic function with a symmetric coefficient matrix (u) (an asterisk
represents the transposition operator), or

P(T� p t�|�Y��t0) = exp −
0c
��t
 �Y�*u�Q(u)Y�u d�u (2)

where Yt
0 = {Yu, 0á u á t}.

The use of a quadratic hazard function can be empirically justified in many epidemiological
studies, e.g. many longitudinal epidemiological studies show a U or J-shaped relation between
cardiovascular risk factors (e.g. serum cholesterol, diastolic blood pressure, body mass index 14)
and the risk of total mortality.15,16 The quadratic hazard function might also be numerically
justified as the first two terms from a Taylor series expansion approximating a more general
hazard function.17 Practically, most data sets will have sufficient information only to estimate
the first two terms of such an approximation. Though we restrict ourselves here to quadratic
hazard functions, the form of the dependence between the hazard and higher-order terms
(potentially affecting greater than second order moments of the risk factor process) can be
derived using conditional semi-invariant procedures.18

The matrix of hazard coefficients Q(u) = || qi,j(u) || i, j = 1, 2, …, n for each u > 0 is non-
negative-definite. For any t > 0, elements of Q satisfy

c
��

0

t
 
i
4
,�j = 1

n

 |�q�i,�j�(u)�| du ` ∞ (3)

If (3) holds, the unconditional survival, S(t) = P(T > t), is6

S(t) = exp −
0c
��t
 (tr Q(u)Γ(u) + m (* u)Q(u)m(u)) du (4)

m(u) = E(Yu | T > u) is the mean of Yu for survivors to u, and Γ(u) is the variance—covariance
matrix of the time dependent conditional Gaussian distribution of Y :

���
��� y

∂
∂

 P(Y�u ` y�|�T p u) =
1���

���(2π� �| ��Γ(u)�| )1 2/
 exp[– y − m(u))( Γ* −1(u)(y� − m(u))] (5)
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where | Γ(u) |  is the determinant of matrix Γ(u) and m(u) and Γ(u) satisfy

���
���

dm(u)

du
= a�0(u) + a(u)m(u) − 2Γ(u)Q(u)m(u),��m(0) = m�0 (6)

and
���

���

dΓ(u)

du
= a� Γ((u) + Γ(u) +(u) b(u)b (* u) − 2Γ(u ,��Γ(0) = Γ�0u) a )* Q(u)Γ(u) (7)

In (4), S(t) is not only a quadratic function of m(u) but also, in part, a function of the
dispersion Γ(u), of Yu.

3. SMOOTHING EQUATIONS FOR RISK FACTOR PROCESS

Equations (6) and (7) are the filtration equations for the first-, m, and second-, Γ, order
moments of the process Yt. Once the filtration equations are estimated, they can be used to find
the smoothing equations necessary to either estimate past values of Yt —or to update parameter
estimates with new survival information. Needed for either task are estimates of the means (m)
and variance–covariance (Γ) of Yt, conditional on survival or, for s á t,

m(s, t) = E(Ys | T > t)
Γ12(s, t) = E((Yt − m(t))( Ys − m(s, t))* | T > t)

Γ22((s, t) = E((Ys − m(s, t))(Ys − m(s, t))* | T > t)
Γ21(s, t) = E((Ys − m(s, t))(Yt − m(t))* | T > t)

Yashin and Manton 13 proved that such estimates must be calculated for the E-step of an
extended EM-algorithm to analyse survival in the presence of unobserved randomly changing
covariates. Here we derive the forward and backward smoothing equations for estimating m and
Γ and discuss their use in analysing covariate trajectories.

Two theorems describe the derivation of smoothing estimators for the stochastic process
specified in (1). The first theorem describes the forward smoothing equation which can be used
with the initial risk factor conditions to calculate their future changes given new information on
survival (i.e. updates on the number of events occurring over time).

Theorem 1

Let the random variable T and stochastic process, Y = (Yt), t ñ 0 satisfy (1) and (2). Assume
s á t. The forward smoothing equations for the mean m(s, t) and covariances Γ12(s, t). Γ21(s, t),
Γ22(s, t) are the integral forms

m(s,�t) = m(s) − 2 
sc
��t
 Γ21� (s,�u)Q(u)m(u) du (8)

Γ�12(s,�t) = Γ(s) +
sc
��t
 �a(u)Γ�12(u,�s) du − 2 

sc
��t
 Γ(u)Q(u)Γ�12(u,�s) du (9)

Γ� 1 2(s,�t) = Γ(s) +
sc
��t
 s u a (Γ �1 *( u,� ))  du − 2 

sc
��t
 Γ ( u)Q(u)Γ�(u) du 2 �21� s,� (10)

Γ� 2 1(s,�t) = Γ(s) � u s �21 s,� 
sc
��t
 Γ ( )Q(u)Γ �− 2 ( u) du 2 2 ,� (11)

where m(u) and Γ(u) are estimated from the filtration equations (6) and (7).
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The proof that these are the appropriate forward smoothing estimators is in the Appendix.
These equations apply when s (the time the study was started, i.e. initial conditions are known)
is fixed and t is increasing.

To estimate covariate values when t is fixed and s is decreasing requires ‘backward
smoothing equations’, i.e. one has fixed observations on a time interval [0, t ] and wishes to
estimate prior values of Y. This is the type of equation needed to make backward projections of
risk factor trajectories, i.e. to project such trajectories prior to the initial conditions.

Theorem 2

Let the random variable T and stochastic process Y = (Yt), t ñ 0, be as specified above, with
s < t. The backward smoothing estimates of the mean m(s, t) and elements of the covariance
matrix Γ12(s, t), Γ 21(s, t), Γ22(s, t) for s years in the past are the derivatives with respect to s of
the moments, i.e.

���
���

d

ds�
 m(s,�t) = a�0(s) + a(s)m(s,�t) + b(s)b (* s)Γ−1(s)(m(s,�t) − m(s));��m(t,�t) = m(t) (12)

���
���

d

ds�
 Γ(s,�t) = a� �2(s) ,�(s ) Γ�21 ; Γ+ b(s)b (* s)Γ−1(s) � Γ(s,�t) 12�� (t,�t) = (t)Γ�21 1 t (13)

���
���

d

ds�
 Γ( s,� a) = t� � �( s) 1(s) ] 2; Γ+ ,(s ) b(s)bΓ−1(s) � Γ12 Γ�1 �� (t,�t) =2 (t)Γ� ,1 2 �t�t (* * s) (14)

���
���

d

ds�
 Γ( t,� 2) = s� a�( t) −*2 s a + ,(s ) b(s)b(s)(s) 22 Γ� 2 )Γ� , 2 �t� (* s

+b(s)b (* s)Γ−1(s)Γ�22(s,�t) + Γ�22(s,�t)Γ−1(s)b(s)b (* s);��Γ�22(t,�t) = Γ(t)�(15)

The proof of the second theorem is also in the Appendix. These equations produce smoothing
estimates for a fixed observation interval.

4. EXAMPLE

To evaluate the properties of the smoothing equations we provide an example where full
information about the process is available, i.e. the filtration equations can be estimated directly
from the available data. Under these conditions we can show that the forward and backward
equations provide identical results. Then we discuss differences in the application of the two
types of equation when only specific partial information on the process is available.

Consider the one-dimensional equation for the process Yt :

dYt = (a0 − a1Yt) dt + b dWt (1, )

where the coefficients fulfil the conditions a0 > 0; a1 > 0; b2 > 0. We also assume the quadratic
hazard coefficient q > 0. We designate m(0), and Γ(0) as the initial mean and variance of the
process. The filtration equations (6) and (7) for this case are:

���
���

dm� (t)

d�t
= a�0 − a�1m� (t) − 2qΓ� (t)m(t);��m(0) (6')

���
���

d
–

� (t)

d�t
= a�1 − �2 q + b�2;2 �Γ� (t) �Γ(0) p 0

Γ
2 Γ(t) (7')
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The stationary solutions for m and Γ are

Γ =
a���

���

1

2q
 1 +

2���
���

qb� 2

a�21
�

1 2/

� − 1 p 0

m =
a���

���

�0
a�1 + 2Γq

p 0

Graphs of the solutions of the filtration equations for the mean (m) and variance (Γ) as a
function of time, from 0 to 2·5, are presented in Figure 1.

The parameter values assumed in the filtration calculations are

a0 = 0·5; �a1 = 2; �b = 1; �q = 1; �m(0) = 1; �Γ(0) = 0·1

The stationary solutions for this example are:

Γ = 0·225, �m = 0·204

For this example, the stationary values were reached after t = 1·5.
The continuous time solutions of the filtration equations and forward smoothing equations

(8), (10), (11) over time 2·5 to 3·5 are presented in Figure 2 for the same parameter values used
to generate the filtration equation solutions in Figure 1.

6 A. I. YASHIN, K. G. MANTON AND G. R. LOWRIMORE

Figure 1. Graphs of m(t) and Γ(t) given by filtration equations (6, ) and (7, ) with initial conditions
m(0) = 1, Γ(0) = 0·1 and parameter values a0 = 0·5; a1 = 2, b = 1, q = 1
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The smoothed estimate m(s, t) of the mean tends to a stationary value as t (i.e. the period of
follow-up or observation of the process) increases past s( = 2·5). The smoothed estimate of the
mean m of Ys declines when t increases from t = 2·5 to 3·5. This was expected, since
observation of a lethal event {T > t) at a later time makes it likely to be associated with a lower
value (assuming the coefficients for the factor in Q are positive) of the risk factor in the past,
i.e. before time t. As expected, the covariance Γ21(s, t) of Ys and Yt also declines as (t − s)
increases, i.e. the relation of risk factor values separated by time decreases as the interval
increases.

Figure 3 shows solutions of the backward smoothing equations (12), (13) and (15) and
solutions of the filtration equations (6, ) and (7 , ).

The solutions for the backward smoothing equations are found when s decreases from s = 3·5
to 2·5 and t = 3·5. The smoothing estimate of the covariate’s mean m(s, t), variance Γ22(s, t)
and covariance Γ21(s, t) decline when s decreases (i.e. the difference between s and t increases).
One can see that the trajectories in Figures 2 and 3 are different: Figure 2 shows the evolution of
m(s, t), Γ22(s, t) and Γ21(s, t) as t increases. Figure 3 shows the evolution of m(s, t), Γ21(s, t)
and Γ21(s, t) as s decreases. However, the values of m(s, t), Γ21(s, t) and Γ21(s, t) in Figures 2
and 3 coincide at (s, t) = (2·5, 3·5) as expected.

Note that despite the fact that forward and backward equations describe the same smoothing
estimates as functions of the two variables s and t, in general their use in analysing problems
will be different. Forward smoothing equations update the estimate of the covariate’s value at a
fixed time s in the past when new information becomes available with t increasing. Backward

REVERSE COVARIATE PROJECTIONS 7

Figure 2. Graphs of m(s, t), Γ21(s, t) and Γ22(s, t) calculated from forward smoothing equations (8), (10)
and (11) with s = 2·5 together with the solutions of filtration equations (6, ) and (7, ). Parameter values are

the same as in Figure 1.
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smoothing equations re-evaluate the entire past unobserved covariate trajectory when
information up to time t is fixed. These equations can also be used for updating the covariate’s
values at a fixed point s in the past when t is changing. However, for this purpose one needs to
solve the backward equations iteratively starting from the boundary conditions t1, t2, …, tn up to
time s instead of one forward equation. Thus, forward equations are preferable for updating
information about covariate’s values at a fixed point in the past.

5. DISCUSSION

Results for the analysis of survival data with a stochastic process model show that the
EMalgorithm can be extended to estimate the parameters of a process of unobserved randomly
changing covariates.13 The generalization of the EM-algorithm required estimating past
covariate values. The smoothing estimators presented above can be used for this purpose
assuming the hazard function is quadratic. Although both forward and backward smoothing
equations are nonlinear differential equations without closed analytic solutions, their numerical
evaluation is not difficult. As our example showed, the calculation of both types of equation,
assuming full information, required approximately the same effort. Hence, both could be used
in extended versions of the EM-algorithm—which of the two types of equation is more
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Figure 3. Graphs of m(s, t), Γ21(s, t), and Γ22(s, t) calculated from backward smoothing equations (12),
(13) and (15) with t = 3·5 together with the solutions of filtration equations (6 , ) and (7 , ). Parameter

values are the same as in Figure 1
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appropriate for use in the algorithm depends on the details of the specific longitudinal
observational plan.

Such estimators may be useful for other types of analytic problems. In engineering, reliability
and clinical trial applications, one often needs to know what caused, or prevented, system
failure. Since many ‘pathologic’ or ‘failure’ processes have a long latency, the observed health
changes, or the observed evolution of system damage, may be the only measurable signs of
unobserved influential processes starting at a given time in the past. For example, the health
consequences of exposure to toxic chemicals may be revealed many years after exposure ended.
Many health effects of asbestos may only begin to be manifest after 15 years, and may continue
to emerge for 50 or more years after exposure.19

In randomized clinical trials, to analyse the effectiveness of medical or surgical therapies one
often needs to evaluate why an expected health effect did not occur. For example, drug trials for
lowering cholesterol often show highly significant reductions in coronary heart disease but little
effect on total mortality.20 One explanation of this result is that the observation period was not long
enough for total mortality effects to be manifest. Alternately, low cholesterol has been found, in
some studies, to be associated with higher cancer risks.15,20 One hypothesis is that the metabolic
effects of cancer lowers cholesterol and that the relation would disappear as one tracks cholesterol
values for individuals over time. An alternative hypothesis is that very low cholesterol values
damage cell membrane integrity and make cells more susceptible to carcinogenic exposures.

Analysis of such hypotheses about the temporal effects of risk factors requires evaluating the
effects of influential, possibly unobserved, processes at multiple times in the past—and doing so
in a way to produce parameter estimates not biased by systematic mortality. Such analyses can
be done with the procedures presented above. Their most general formulation (i.e. without a
specific parametrization of the hazard function or of the cross temporal density functions)
involves stochastic differential equations for conditional multivariate probability densities9

which generalize the well-known Kolmogorov–Fokker–Plank equations for unconditional
densities. Those equations, however, do not represent the effects on the distribution of possible
loss of density (i.e. mortality). These effects were taken into account by Woodbury and Manton5

who considered the evolution of the multivariate distribution function generated by individual
random walks in a multidimensional spice where probabilistic ‘killing’ terms are functions of an
individual’s state space location. Yashin et al.22 included such ‘killing’ terms in the general
nonlinear filtration schemes discussed by Lipster and Shiryayev.9.

For the specific case of Gaussian processes, the smoothing estimators may be written for the
first two moments of the conditional Gaussian distribution. Thus, instead of dealing with partial
differential equations, one can deal with ordinary differential equations with more manageable,
closed form, analytic solutions. This is because a quadratic hazard preserves the multivariate
Gaussian distribution of state variables among survivors; i.e., the distribution of unobserved
covariates among survivors is Gaussian (with changed mean and variance) if the marginal
distribution of the covariates is Gaussian.23 These equations can be used, for example, to extend
the EM-algorithm to estimate the parameters of processes for unobserved randomly changing
covariates.13 If conditions require the quadratic hazard to be generalized (e.g. adding cubic and
quartic terms) closed-form solutions are not possible.

6. CONCLUSION

We presented two strategies to evaluate covariate trajectories in a stochastic process model of
mortality and aging when partial information on the process is available. The ‘backward’ and
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‘forward’ smoothing equations presented use properties of the Gaussian distribution of covariate
values among survivors assuming a quadratic hazard function to derive a computationally
tractable solution to the problem. Forward smoothing equations allow for continuous evaluation
of unobserved influential processes at fixed times in the past when survival time is increasing,
i.e. as new information about events (or their absence) is forthcoming (e.g. ‘monitoring’ or
‘updating’ equations). Backward equations allow the past trajectory, or history, of influential
factors to be evaluated when information is ‘fixed,’ i.e., survival times do not change. Those
smoothing equations can be used either for ‘reverse’ health projections or for evaluation of the
past exposure to hazardous materials. They are also crucial in implementing a generalized
version of the EM-algorithm for survival influenced by an unobserved stochastic process.
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APPENDIX

Proof of Theorem 1

To estimate the forward smoothing equations, one first uses (6) and (7) to solve the filtration
problem for a stochastic process. Consider a two-component process satisfying

dY1(u) = (a0(u) + a(u)Y1(u)) du + b(u) dWu (A1)
and

dY2(u) = (a0(u)I(u á s) + a(u)I(u á s)Y1(u)) du + b(u)I(u á s) dWu (A2)

Note that for s < t, Y1(t) = Yt and Y2(t) = Ys. Let the hazard be a quadratic function of Y1 and
time, or

µ(Y1(u), Y2(u), u) = Y1*(u)Q(u)Y1(u) (A3)

The application of (6) and (7) and using estimates of Q from (A3)6 yields the conditional means
m1(t) and m2(t), t > s as,

m�1(t) = m�0 +
0c
��t
 (a�0(u) + a(u)m�1(u) − 2Γ�11(u)Q(u)m�1(u) du (A4)

and

m�2(t) = m�1 − 2 c
��

s

t
 Γ�21(u)Q(u)m�1(u) du(s) (A5)

and the conditional covariance elements, Γ11(t), Γ12(t), Γ21(t) and Γ22(t) as

Γ�11(t) = Γ�11(0) +
0c
��t
 [a(u)Γ�11(u) + Γ�11(u)a (* u) + b(u)b (* u) − 2Γ�11(u)Q(u)Γ�11(u)] du� (A6)

Γ�12(t) = Γ�11(s) +
sc
��t
 2a(u)Γ�1  (u) − 2 

sc
��t Γ�11(u)Q(u)Γ�12(u) du�du (A7)

Γ� 12 (t) = Γ�11(s) +
sc
��t
 2 a (* uΓ� ) (u) − 2 

sc
��t Γ� 1 1(u)Q(u)Γ�1 (u) du1  2�du (A8)
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and

Γ� 22 (t) = Γ�11(s) − 2 
sc
��t Γ� 1(u)Q(u)Γ�12 (u) du2� (A9)

according to the definitions m1(t) = m(t); m2(t) = m(s, t); Γ11(t) = Γ(t), Γ12(t) = Γ12(s, t),
Γ21(t) = Γ21(s, t), Γ22(t) = Γ22(s, t). This proves Theorem 1. D

To prove theorem 2, for the ‘backward’ smoothing equations, we first prove the following lemma.

Lemma A.1

If
g(s, t) = Γ21(s, t)Γ −1(t) (A10)

then g(s, t) satisfies,

���
���

d�g(s,�t)

d�t
= –g(s,�t)(a(t) + b(t)b (* t)Γ−1(t)),��g(s,�s) = I (A11)

where I is the identity matrix.

Proof
Differentiating Γ −1(t) Γ(t) = 1 with respect to t, and after simple transformations, one obtains,

���
���

d

d�t
 (Γ−1(t)) = –Γ−1(t)a(t) − a (* t)Γ−1(t) − Γ−1(t)b(t)b (* t)Γ−1(t) + 2Q(t) (A12)

Using (A12), we differentiate g(s, t) = Γ21(s, t) Γ −1(t) over t to get (A11). D

Remark

Note a solution of a system of linear equations g(s, t) satisfies

g(s, t) = g(0, s) −1g(0, t), �s á t

The equation for g(0, s) −1 can be found by differentiating

g(0,s) −1g(0, s) = I

This is,

���
���

d

d�s
 (g(0,�s)−1) = (a(s) + b(s)b (* s)Γ−1(s))g(0,�s)−1 (A13)

Similarly, one can show

g (* 0,�t) = I −
0c
��t
 (a (* u) + b(u)b (* u)Γ−1(u))g (* 0,�u) du (A14)

and

g (* 0,�t) = I +
0c
��t
 g ( −
* u) (a + b(u(* u) Γ−1(u))�−1 0,� 1 )b (* u)  du (A15)

where I is the identity matrix.
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Proof of Theorem 2
Consider  the  equations  for  covariance  elements  Γ21(s, t)  and  Γ22(s, t).  Putting  Γ21(s, t) =
g(s, t)Γ(t) on the r.h.s. of (8), for m(s, t), produces

m(s,�t) = m(s) − 2g(0,�s)−1 
sc
��t
 �g(0,�u)Γ(u)Q(u)m(u) du (A16)

Differentiating (A16) with respect to s we get

���
���

d�m(s,�t)

ds
= a�0(s) + a(s)m(s,�t) − 2[a(s) + b(s)b (* s)Γ−1(s)] 

sc
��t
 Γ�21(s,�u)Q(u)m(u) du� (A17)

Since, in accordance with (8),

–2 
sc
��t
 Γ�21(s,�u)Q(u)m(u) du = m(s,�t) − m(s)

(A17) may be transformed to

���
���

d�m(s,�t)

ds
= a�0(s) + a(s)m(s,�t) + b(s)b (* s)Γ−1(s)[m(s,�t) − m(s)]

which is (12). The boundary condition is m(t, t) = m(t).
Using (A8), we have for Γ21(s, t) = g(s, t)Γ(t)

(Γ Γ Γ Γ  �21(s,�t) = Γ(s) + g(0,�s)−1 
sc
��t
 g(0,�u) u)a (* u) du − 2g(0,�s)−1 

sc
��t
 g(0,�u) (u)Q(u) (u) du

(A18)

After differentiating both parts of (A18) with respect to s, taking into account (A6) and (A13)
for Γ(s) and g(0, s) −1, and using the equality

Γ Γ* Γ Γ Γ
sc
��t
 ( �21(s,�u)a (u) − 2 �21(s,�u)Q(u) (u)) du = �21(s,�t) − (s)

which follows from (10), we get the differential equation,

Γ Γ Γ* Γ
d���

���d�s
 �21(s,�t) = a(s) �21(s,�t) + b(s)b (s) −1(s) �21(s,�t)

for Γ21(s, t), with boundary condition Γ21(t, t) = Γ(t) which is (13).
Now, consider the equation for Γ22(s, t):

Γ Γ Γ Γ� * *22(s,�t) = (s) − 2g(0,�s)−1�
sc
��t
 g(s,�u) (u)Q(u) (u)g (s,�u) du �g (0,�s)−1�

Differentiating both parts of this equality with respect to s and using the equality

Γ Γ Γ Γ–2 
sc
��t
 �12(s,�u)Q(u) �21(s,�u) du = �22(s,�t) − (s)

which follows from (11), we get

���
���

d�

d�s
 Γ Γ Γ * *�22(s,�t) = a(s) �22(s,�t) + �22(s,�t)a (s) − b(s)b (s)

Γ Γ Γ Γ *+ b(s)b (* s) −1(s) �22(s,�t) + �22(s,�t) −1(s)b(s)b (s)

with boundary condition Γ22(t, t) = Γ(t), which proves Theorem 2. D
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